Какое агрегатное состояние имеет хладагент на входе в компрессор системы кондиционирования воздуха
Перейти к содержимому

Какое агрегатное состояние имеет хладагент на входе в компрессор системы кондиционирования воздуха

  • автор:

Принцип работы кондиционера

Кондиционер предназначен в основном для охлаждения воздуха. Рассмотрем этот процесс.

Начнем с простого. Вещества имеют такое свойство — при испарении они поглощают тепло, при кондесации они его выделют. На этом физическом явлении и построена работа кондиционера.

Принцип действия кондиционера основан на изменении агрегатного состояния хладагента (фреона) в зависимости от температуры и давления в замкнутой системе. Для начала ознакомимся с основными узлами кондиционера.

Основными узлами любого кондиционера являются:

  • Компрессор — сжимает фреон и поддерживает его движение по холодильному контуру.
  • Конденсатор — радиатор, расположенный во внешнем блоке. Название отражает процесс, происходящий при работе кондиционера — переход фреона из газообразной фазы в жидкую (конденсация).
  • Испаритель — радиатор, расположенный во внутреннем блоке. В испарителе фреон переходит из жидкой фазы в газообразную (испарение).
  • ТРВ (терморегулирующий вентиль) — понижает давление фреона перед испарителем.
  • Вентиляторы — создают поток воздуха, обдувающего испаритель и конденсатор. Используются для более интенсивного теплообмена с окружающим воздухом.

Охлаждение происходит за счет испарения хладагента (фреона) в контуре испарителя (внутреннего блока). Далее фреон в газообразном состоянии всасывается компрессором, который повышает его давление до 20-25 атм. Соответственно повышается и его температура (до 90 градусов). Поступивший в теплообменник конденсатора (наружного блока) под высоким давлением фреон конденсируется и переходит в жидкое состояние. Далее фреон в жидком состоянии попадает в регулятор потока, где давление уменьшается. При этом часть фреона может испариться и в испаритель попадет смесь жидкости и пара.

В испарителе фреон снова закипает, отбирая тепло у окружающего воздуха, и выходит из конденсатора. Цикл повторяется.

Некоторые кондиционеры могут и обогревать помещение с помощью так называемого теплового насоса. В этом режиме фреон циркулирует по контуру в обратном направлении, отбирая тепло из воздуха снаружи и передавая его внутрь помещения. Однако чем ниже температура на улице, тем труднее отбирать тепло из воздуха. Мощность обогрева падает по мере понижения температуры на улице, и при наружной температуре ниже -5°С не следует обогревать помещения с помощью кондиционера.

использованы материалы сайта techhome

Принцип работы кондиционера

how-как работает кондиционер

Принцип работы любого кондиционера основывается на физических свойствах жидкостей, которые поглощают тепло при испарении и выделяют его при конденсации.

В качестве переносчика тепла в кондиционере применяется хладагент (фреон), который изменяет свое агрегатное состояние в зависимости от температуры и давления в замкнутой системе.

Принцип работы сплит-системы

В первую очередь ознакомимся с основными элементами сплит-системы. Современные кондиционеры состоят из двух блоков: наружного и внутреннего.

Наружный блок

Как и следует из названия, данный блок монтируется на улице.

Наружный блок сплит-системы состоит из следующих основных узлов:

  • Вентилятор — обеспечивает воздушный поток для обдува конденсатора.
  • Конденсатор — представляет собой радиатор, в котором происходит процесс охлаждения и конденсации фреона. Воздушный поток, проходящий через конденсатор, забирает избыточное тепло и уходит в окружающую среду.
  • Компрессор — осуществляет сжатие хладагента и поддержание его движения по холодильному контуру.
  • Плата управления — как правило, устанавливается в наружных блоках инверторных сплит-систем и регулирует мощность работы компрессора.
  • Четырехходовой клапан — компонент кондиционеров с функцией обогрева. При включении кондиционера на обогрев, этот клапан изменяет направление движения фреона таким образом, что тепло забирается во внешней среде и подается в помещение.
  • Штуцерные соединения для подключения трассы (медных трубок), соединяющих между собой наружный и внутренний блоки.
  • Фильтр фреоновой системы устанавливается перед входом компрессора и способствует защите его от частиц грязи.
  • Защитная крышка, закрывающая штуцерные соединения и электрические разъемы.

Внутренний блок

Данный блок устанавливается непосредственно в помещении.

Внутренний блок состоит из следующих основных узлов:

  • Передняя панель — пластиковая решетка, через которую внутрь блока поступает воздух. Данная панель легко снимается для планового обслуживания кондиционера.
  • Фильтр грубой очистки, представляющий пластиковую сетку. Он предназначен для очистки воздуха от крупных частиц пыли, шерсти животных, пуха и т.п. Для нормальной работы кондиционера фильтр необходимо чистить 2 раза в месяц.
  • Система фильтрации состоит из различных фильтров тонкой очистки воздуха, среди которых обычно встречаются: катехиновый, электростатический, антибактериальный и т.п.
  • Вентилятор — предназначен для циркуляции очищенного воздуха в помещении.
  • Испаритель — представляет из себя радиатор (теплообменник), в котором происходит нагрев холодного хладагента и его испарение. Проходящий через радиатор воздух отдает тепло, и охлажденным подается в помещение.
  • Жалюзи — предназначены для регулировки направления воздушного потока. Они имеют электропривод, благодаря чему их положение может регулироваться с пульта дистанционного управления. Кроме этого, жалюзи могут автоматически совершать колебательные движения для равномерного распределения воздушного потока в помещении.
  • Индикаторная панель состоит из индикаторов, отображающих текущий режим работы кондиционера; на нее также выводятся коды ошибок.
  • Плата управления, на которой размещен блок электроники с центральным микропроцессором.
  • Штуцерные соединения — расположены в нижней задней части внутреннего блока. К ним подключаются медные трубки (трасса), соединяющие между собой наружный и внутренний блоки.

Для того чтобы охладить воздух в комнате, необходимо отвести тепло, которое является энергией. А энергия, как известно, не может исчезнуть бесследно. Именно поэтому кондиционер состоит из двух блоков: внутреннего и наружного. Существуют также одноблочные системы охлаждения, которые отводят тепло по выведенному наружу воздуховоду.

Схема работы сплит-системы

Как работает кондиционер

Принцип работы кондиционера построен на переносе тепла из помещения на улицу в режиме охлаждения, и, наоборот — в режиме обогрева. Кондиционеры Fujitsu универсальны и поддерживают оба режима.

Для переноса тепловой энергии кондиционер потребляет электроэнергию. Но следует отметить, что хороший кондиционер переносит приблизительно в три раза больше энергии, чем потребляет. Электроэнергия необходима для работы компрессора, который, создавая перепады давления, доставляет хладагент до конденсатора.

Режимы охлаждения и обогрева

При включении кондиционера фреон в газообразном виде под низким давлением подается в компрессор, где происходит его сжатие, при этом хладагент нагревается до +70–90 °C, после чего подается в конденсатор. В воздушном теплообменнике наружного блока происходит конденсация хладагента — переход из газообразного состояния в жидкое. Этот процесс сопровождается охлаждением хладагента и выделением тепла, которое при помощи обдува вентилятора отводится в окружающую среду. Проходя через капиллярную трубку, хладагент дросселируется. В теплообменнике испарителя весь процесс происходит уже в обратном порядке, и хладагент из жидкого состояния переходит в газообразное. При этом выделяется холод и поглощается тепло из помещения, в котором установлен внутренний блок кондиционера.

В режиме обогрева процесс происходит в обратном порядке: в наружном блоке поглощается атмосферное тепло, а внутренний блок использует данное тепло для обогрева помещения.

Принцип работы кондиционера

Основные функции кондиционера — это охлаждение и обогрев воздуха, уже находящегося внутри помещения. Это означает, что кондиционер в общем случае не производит притока свежего воздуха с улицы или вытяжки воздуха из помещения. Для задач вытяжки и притока служит вентиляционное оборудование.

Охлаждение воздуха в кондиционерах происходит при помощи компрессионного цикла охлаждения.

Температура кипения

Температура кипения жидкости зависит от давления окружающей среды. Чем ниже это давление, тем ниже температура кипения.

Например, общеизвестно, что вода закипает при температуре 100С. Но это происходит лишь при нормальном атмосферном давлении (760 мм рт. ст.). При повышении давления температура кипения возрастет, а при его понижении (например, высоко в горах) вода закипит при температуре гораздо ниже 100С. В среднем, при изменении давления на 27 мм .рт. ст. температура кипения изменится на 1С.

Различные жидкости кипят при разных температурах даже при одинаковом внешнем давлении.

Например , жидкий азот кипит при температуре около -77;С, а фреон R-22, который применяется в холодильной технике — при температуре -40.8С (при нормальном атмосферном давлении).

Теплота парообразования

При испарении жидкости теплота поглощается из окружающей среды . При конденсации пара тепло, напротив, выделяется. Теплота парообразования жидкостей очень велика.

Например, энергия, нужная для испарения 1 г воды при температуре 100С (539 калорий/г), значительно больше энергии, необходимой для нагревания этой воды от 0;С до 100С (100 калорий/г)!

Если жидкий фреон поместить в открытый сосуд (с атмосферным давлением и комнатной температурой), то он сразу же вскипит, поглощая при этом большое количество теплоты из окружающей среды.

Это явление и используется в холодильной машине. Только в ней фреон превращается в пар в специальном отделении — испарителе. Трубки испарителя обдуваются потоком воздуха. Кипящий фреон поглощает тепло из этого воздушного потока, охлаждая его.

Но в холодильной машине невозможно только испарять фреон, поглощая тепло. Ведь тогда в ней образуется большое количество паров и потребуется подводить все новый и новый жидкий фреон постоянно. Поэтому в холодильной машине производится и обратный процесс конденсации — превращения из пара в жидкость.

При конденсации любой жидкости выделяется теплота, которая поступает затем в окружающую среду. Температура конденсации, как и температура кипения, зависит от внешнего давления. При повышенном давлении конденсация может происходить при весьма высоких температурах.

К примеру , фреон R-22 начинает конденсироваться при +55С, если находится под давлением 23 атмосферы (около 17,5 тыс. мм рт. ст.).

Холодильная машина

В холодильной машине фреон конденсируется в специальном отделении — конденсаторе. Тепло, выделившееся при конденсации, удаляется потоком охлаждающей жидкости или воздуха.

Поскольку холодильная машина должна работать непрерывно, то в испаритель должен постоянно поступать жидкий фреон, а в конденсатор — его пары. Этот процесс — циклический, ограниченное количество фреона циркулирует по холодильной машине, испаряясь и конденсируясь.

Энтальпия хладагента

Происходящий в холодильной машине цикл охлаждения удобно изображать графически. На диаграмме показано соотношение давления и теплосодержания (энтальпии) хладагента.

Энтальпия — это функция состояния, приращение которой при процессе с постоянным давлением равно теплоте, полученной системой.

На диаграмме показана кривая насыщения хладагента .

  • Левая ветвь кривой соответствует насыщенной жидкости
  • Правая часть соответствует насыщенному пару.
  • В критической точке ветви кривой соединяются, и вещество может находиться и в жидком, и в газообразном состоянии.
  • Внутри кривой — зона, соответствующая смеси пара и жидкости.
  • Слева от кривой (в области меньшей энтальпии) — переохлажденная жидкость.
  • Справа от кривой (в области большей энтальпии) — перегретый пар.

Теоретический цикл охлаждения несколько отличается от реального. В действительности происходят потери давления на разных этапах перекачки хладагента, снижающие эффективность охлаждения. Это не учитывается в идеальном цикле

Теоретический цикл охлаждения

В компрессоре

Холодный насыщенный пар хладагента поступает в компрессор холодильной машины (точка С1). В процессе сжатия его давление и температура повышаются (точка D). Энтальпия тоже повышается на величину, равную проекции линии С1-D. На схеме это отрезок НС1-НD.

Конденсация

В конце цикла сжатия хладагента горячий пар попадает в конденсатор. Здесь при постоянных температуре и давлении происходит конденсация, и горячий пар превращается в горячую жидкость. Хотя температура практически постоянна, энтальпия уменьшается при фазовом переходе, а выделившееся тепло отводится от конденсатора. Этот процесс отображается на диаграмме в виде отрезка, параллельного горизонтальной оси (давление постоянно).

Процесс в конденсаторе холодильной машины происходит в три этапа: снятие перегрева (D-Е), конденсация (Е-А) и переохлаждение жидкости (А-А1). Участок диаграммы D-А1 соответствует изменению энтальпии хладагента в конденсаторе и показывает, какое количество тепла выделяется в ходе данного процесса.

  • Снятие перегрева. В этом процессе температура пара снижается до температуры насыщения. Излишнее тепло отводится, но изменения агрегатного состояния не происходит. На этом этапе снимается около 10 — 20% тепла.
  • Конденсация. На этом этапе происходит изменение агрегатного состояния хладагента. Температура при этом остается постоянной. На этом этапе снимается около 60 — 80% тепла.
  • Переохлаждение жидкости. В этом процессе жидкий хладагент охлаждается, при этом получается переохлажденная жидкость. Агрегатное состояние не изменяется. Переохлаждение жидкости на этом этапе позволяет повысить производительность холодильной машины. При постоянном уровне энергопотребления понижение температуры на 1 градус повышает производительность холодильной машины на 1%.

Регулятор потока

Переохлажденная жидкость с параметрами точки А2 поступает на регулятор холодильной машины. Он представляет собой капиллярную трубку или терморегулирующий расширительный клапан. В регуляторе происходит резкое снижение давления. Непосредственно за регулятором начинается кипение хладагента. Параметры получившейся смеси пара и жидкости соответствуют точке В.

В испарителе

Смесь пара и жидкости (точка В) попадает в испаритель холодильной машины, где поглощает тепло от окружающей среды и полностью переходит в пар (точка С1). Этот процесс происходит при постоянной температуре, но энтальпия при этом увеличивается.

На выходе испарителя парообразный хладагент немного перегревается (отрезок С1-С2), чтобы капли жидкости испарились полностью. Для этого приходится увеличивать площадь теплообменной поверхности испарителя (на 4-6% на каждый градус перегрева). Обычно перегрев составляет 5-8 градусов, и увеличение площади теплообмена достигает 20%.

В испарителе холодильной машины энтальпия хладагента изменяется на величину НВ-НС2, равную проекции кривой испарения на горизонтальную ось.

Реальный цикл охлаждения

Реальный цикл охлаждения имеет некоторые отличия от идеального. Это происходит за счет потерь давления, возникающих на линии всасывания и нагнетания холодильной машины, а также в клапанах компрессора. Поэтому отображение реального цикла на диаграмме связи давления и энтальпии несколько иное.

Из-за потерь давления на входе в компрессор всасывание должно проходить при давлении, которое ниже давления испарения (отрезок C1-L). Кроме того, из-за потерь давления на выходе компрессору приходится сжимать пар хладагента до давления, которое выше давления конденсации (M-D1). Таким образом, работа сжатия увеличивается. Такая компенсация потерь давления в реальной холодильной машине снижает эффективность цикла.

Кроме потерь давления в трубопроводе, есть и другие отклонения от идеального цикла. Во-первых, реальное сжатие хладагента в компрессоре не может быть строго адиабатическим (без подвода и отвода тепла). Поэтому работа сжатия оказывается выше теоретически рассчитанной. Во-вторых, в компрессоре холодильной машины имеются механические потери энергии, что приводит к увеличению необходимой мощности электродвигателя.

Эффективность цикла охлаждения холодильной машины

Отображение на диаграмме:
C1-L — потеря давления при всасывании
M-D1 — потеря давления при выходе
HD-HC1 — теоретическое изменение энтальпии (теплосодержания) при сжатии
HD1-HC1 — реальное изменение энтальпии (теплосодержания) при сжатии
C1D — теоретическое сжатие
LM — реальное сжатие

Для выбора лучшего из циклов охлаждения необходимо оценивать их эффективность. Обычно показателем эффективности цикла холодильной машины служит КПД или коэффициент термической (термодинамической) эффективности.

Коэффициент термической эффективности — это:

  • отношение изменения энтальпии хладагента в испарителе (НС-НВ) к изменению энтальпии в процессе сжатия (HD-HC).
  • или: соотношение мощности охлаждения и электрической мощности, которую потребляет компрессор холодильной машины.

Например, если коэффициент термической эффективности какой-либо холодильной машины равен 2, то на каждый кВт потребляемой электроэнергии эта машина производит 2 кВт холода.

Какое агрегатное состояние имеет хладагент на входе в компрессор системы кондиционирования воздуха

Войти с паролем Консультанты: ,

Медные трубы

Теплоизоляция

Вентиляция

Помпы для кондиционеров

Инструмент

Промышленные шланги Texonic

Расходные материалы

Металлоконструкции

Компрессионный цикл охлаждения : хладагенты для кондиционера

На выходе из испарителя хладагент — это пар при низкой температуре и низком давлении.
Затем компрессор всасывает хладагент, давление повышается до примерно 20 атм., а температура достигает 70 — 90°С.
После этого горячий пар хладагента попадает в конденсатор, где он охлаждается и конденсируется. Для охлаждения используется вода или воздух. На выходе из конденсатора хладагент представляет собой жидкость под высоким давлением.
Внутри конденсатора пар должен полностью перейти в жидкое состояние. Для этого температура жидкости, выходящей из конденсатора, на несколько градусов (обычно 4-6°С) ниже температуры конденсации при данном давлении.
Затем хладагент (имеющий в этот момент жидкое агрегатное состояние при высоких давлении и температуре) поступает в регулятор потока. Здесь давление резко падает, и происходит частичное испарение.
На вход испарителя попадает смесь пара и жидкости. В испарителе жидкость должна полностью перейти в парообразное состояние. Поэтому температура пара на выходе из испарителя немного выше температуры кипения при данном давлении (обычно на 5-8°С). Это необходимо, чтобы в компрессор не попали даже мелкие капли жидкого хладагента, иначе компрессор может быть поврежден.
Образовавшийся в испарителе перегретый пар выходит из него, и цикл возобновляется сначала.
Итак, ограниченное количество хладагента постоянно циркулирует в холодильной машине, меняя агрегатное состояние при периодически изменяющихся температуре и давлении.

В каждом цикле имеется два определенных уровня давления. На стороне высокого давления происходит конденсация хладагента и находится конденсатор. На стороне низкого давления находится испаритель и жидкий хладагент превращается в пар. Граница между областями высокого и низкого давления проходит в двух точках — на выходе из компрессора (нагнетательный клапан) и на выходе из регулятора потока.

© 2005–2024 OOO «Расходка»
расходные материалы для кондиционеров и систем вентиляции
(медная труба — приточные установки — вентиляторы — воздуховоды — диффузоры — вентиляционные решетки — инструмент ridgid)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *